本文描述了对象目标导航任务的框架,该任务要求机器人从随机的启动位置查找并移至目标对象类的最接近实例。该框架使用机器人轨迹的历史记录来学习空间关系图(SRG)和图形卷积网络(GCN)基于基于不同语义标记区域的可能性以及这些区域不同对象类别的发生的可能性。为了在评估过程中定位目标对象实例,机器人使用贝叶斯推理和SRG估计可见区域,并使用学习的GCN嵌入来对可见区域进行排名,并选择接下来的区域。
translated by 谷歌翻译
对象目标导航要求机器人在以前看不见的环境中找到并导航到目标对象类的实例。我们的框架会随着时间的推移逐步构建环境的语义图,然后根据语义映射重复选择一个长期目标(“ where to Go”)以找到目标对象实例。长期目标选择被称为基于视觉的深度强化学习问题。具体而言,对编码器网络进行了训练,可以从语义图中提取高级功能并选择长期目标。此外,我们还将数据增强和Q功能正则化合并,以使长期目标选择更有效。我们在AI栖息地3D模拟环境中使用照片现实的Gibson基准数据集进行了实验结果,以证明与最先进的数据驱动基线相比,标准措施的性能改善。
translated by 谷歌翻译
脑转移性疾病的治疗决策依赖于主要器官位点的知识,目前用活组织检查和组织学进行。在这里,我们开发了一种具有全脑MRI数据的准确非侵入性数字组织学的新型深度学习方法。我们的IRB批准的单网回顾性研究由患者(n = 1,399)组成,提及MRI治疗规划和伽马刀放射牢房超过19年。对比增强的T1加权和T2加权流体减毒的反转恢复脑MRI考试(n = 1,582)被预处理,并输入肿瘤细分,模态转移和主要部位分类的建议深度学习工作流程为五个课程之一(肺,乳腺,黑色素瘤,肾等)。十倍的交叉验证产生的总体AUC为0.947(95%CI:0.938,0.955),肺类AUC,0.899(95%CI:0.884,0.915),乳房类AUC为0.990(95%CI:0.983,0.997) ,黑色素瘤ACAC为0.882(95%CI:0.858,0.906),肾类AUC为0.870(95%CI:0.823,0.918),以及0.885的其他AUC(95%CI:0.843,0.949)。这些数据确定全脑成像特征是判别的,以便准确诊断恶性肿瘤的主要器官位点。我们的端到端深度射出方法具有巨大的分类来自全脑MRI图像的转移性肿瘤类型。进一步的细化可以提供一种无价的临床工具,以加快对精密治疗和改进的结果的原发性癌症现场鉴定。
translated by 谷歌翻译
The previous fine-grained datasets mainly focus on classification and are often captured in a controlled setup, with the camera focusing on the objects. We introduce the first Fine-Grained Vehicle Detection (FGVD) dataset in the wild, captured from a moving camera mounted on a car. It contains 5502 scene images with 210 unique fine-grained labels of multiple vehicle types organized in a three-level hierarchy. While previous classification datasets also include makes for different kinds of cars, the FGVD dataset introduces new class labels for categorizing two-wheelers, autorickshaws, and trucks. The FGVD dataset is challenging as it has vehicles in complex traffic scenarios with intra-class and inter-class variations in types, scale, pose, occlusion, and lighting conditions. The current object detectors like yolov5 and faster RCNN perform poorly on our dataset due to a lack of hierarchical modeling. Along with providing baseline results for existing object detectors on FGVD Dataset, we also present the results of a combination of an existing detector and the recent Hierarchical Residual Network (HRN) classifier for the FGVD task. Finally, we show that FGVD vehicle images are the most challenging to classify among the fine-grained datasets.
translated by 谷歌翻译
In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time. As a result, we poorly understand its global structure and evolution, the mechanisms of its main activity processes, magnetic storms, and substorms. New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, as well as new AI-enabled missions will need to be developed to meet this Sparse Data challenge.
translated by 谷歌翻译
We describe a Physics-Informed Neural Network (PINN) that simulates the flow induced by the astronomical tide in a synthetic port channel, with dimensions based on the Santos - S\~ao Vicente - Bertioga Estuarine System. PINN models aim to combine the knowledge of physical systems and data-driven machine learning models. This is done by training a neural network to minimize the residuals of the governing equations in sample points. In this work, our flow is governed by the Navier-Stokes equations with some approximations. There are two main novelties in this paper. First, we design our model to assume that the flow is periodic in time, which is not feasible in conventional simulation methods. Second, we evaluate the benefit of resampling the function evaluation points during training, which has a near zero computational cost and has been verified to improve the final model, especially for small batch sizes. Finally, we discuss some limitations of the approximations used in the Navier-Stokes equations regarding the modeling of turbulence and how it interacts with PINNs.
translated by 谷歌翻译
Despite recent success in large language model (LLM) reasoning, LLMs still struggle with hierarchical multi-step reasoning like generating complex programs. In these cases, humans often start with a high-level algorithmic design and implement each part gradually. We introduce Parsel, a framework enabling automatic implementation and validation of complex algorithms with code LLMs, based on hierarchical function descriptions in natural language. Parsel can be used across domains requiring hierarchical reasoning, e.g. code synthesis, theorem proving, and robotic planning. We demonstrate Parsel's capabilities by using it to generate complex programs that cannot currently be automatically implemented from one description and backtranslating Python programs in the APPS dataset. Beyond modeling capabilities, Parsel allows problem-solving with high-level algorithmic designs, benefiting both students and professional programmers.
translated by 谷歌翻译
The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and user experience. Moreover, new use cases in the area of vehicular and industrial communications will emerge. Specifically in the area of vehicle communication, vehicle-to-everything (V2X) schemes will benefit strongly from such advances. With this in mind, we have conducted a detailed measurement campaign with the purpose of enabling a plethora of diverse ML-based studies. The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies, thus enabling a variety of different studies towards V2X. The datasets are labeled and sampled with a high time resolution. Furthermore, we make the data publicly available with all the necessary information to support the on-boarding of new researchers. We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage, as well as some hints at potential research studies.
translated by 谷歌翻译
The intersection of ground reaction forces in a small, point-like area above the center of mass has been observed in computer simulation models and human walking experiments. This intersection point is often called a virtual pivot point (VPP). With the VPP observed so ubiquitously, it is commonly assumed to provide postural stability for bipedal walking. In this study, we challenge this assumption by questioning if walking without a VPP is possible. Deriving gaits with a neuromuscular reflex model through multi-stage optimization, we found stable walking patterns that show no signs of the VPP-typical intersection of ground reaction forces. We, therefore, conclude that a VPP is not necessary for upright, stable walking. The non-VPP gaits found are stable and successfully rejected step-down perturbations, which indicates that a VPP is not primarily responsible for locomotion robustness or postural stability. However, a collision-based analysis indicates that non-VPP gaits increased the potential for collisions between the vectors of the center of mass velocity and ground reaction forces during walking, suggesting an increased mechanical cost of transport. Although our computer simulation results have yet to be confirmed through experimental studies, they already strongly challenge the existing explanation of the VPP's function and provide an alternative explanation.
translated by 谷歌翻译
Person recognition at a distance entails recognizing the identity of an individual appearing in images or videos collected by long-range imaging systems such as drones or surveillance cameras. Despite recent advances in deep convolutional neural networks (DCNNs), this remains challenging. Images or videos collected by long-range cameras often suffer from atmospheric turbulence, blur, low-resolution, unconstrained poses, and poor illumination. In this paper, we provide a brief survey of recent advances in person recognition at a distance. In particular, we review recent work in multi-spectral face verification, person re-identification, and gait-based analysis techniques. Furthermore, we discuss the merits and drawbacks of existing approaches and identify important, yet under explored challenges for deploying remote person recognition systems in-the-wild.
translated by 谷歌翻译